
CS352 Lecture - Database System Architectures

Last revised April 6, 2023
Objectives:

1. To discuss possible architectures for a DBMS - centralized, distributed
2. To introduce DBMS parallelism
3. To introduce speedup and scaleup (batch and transaction)
4. To introduce the CAP theorem
5. To introduce cloud computing and Ias, Pas, and Sas models

Materials

1. Projectable of two variants of client server architecture
2. Projectable of Figure 20.9

I. Introduction

A. Today's topic overviews several more advanced topics.

B. The textbook deals with these topics in chapters 20-24.

C. Obviously, the coverage here will be restricted to a very broad overview.
More detailed coverage would often be found in a second DBMS course.

II.Centralized DBMS's

A. Most large databases require support for accessing the database by multiple
users, often at multiple physical locations (sites). There are a variety of
overall system architectures that can be used to accomplish this.

B. Historically, early database systems were based on a CENTRALIZED
MODEL, in which the database resides on a single computer system that
allows access local or remote users, with all of the computation being done
on the central computer. This is still the model used by some systems today.

1

1. Basic characteristics:

a. All data resides on a single computer system, all sharing a common
memory system and set of disks - perhaps using a RAID
configuration.

b. All computations using the data are performed by this one system.

c. The computer system may be a single user system or a multiuser
system or even an embedded system such as SQLite, which is a C
library that might be embedded into an application program Today, it
is often a multicore computer or a virtual machine.

d. Historically, multiuser systems afforded access to multiple users via text-
only terminals. Today, it is common to offer access to multiple users via
personal computers or workstations running terminal emulation software, or
via a web interface.

Example: Gordon's first administrative computer system used this model
when it was first installed in 1979. The administrative database resided on a
single computer system. Campus offices accessed this database via DEC
VTxxx terminals or later PC's running terminal emulation software, or even
later via web-based applications accessing the database through a web
server running on the same system. Though Gordon uses a different system
today, it still provides access to multiple users in a similar way.

2. Often, a centralized database system is used as part of a client-server model
that is structured something like one of the following alternatives.

PROJECT

2

a. In either case, each layer has specific responsibilities:

i. The user interface layer is responsible for interaction with the user,
typically via a GUI (or some sort of command line). Frequently,
this layer is implemented by a GUI running a set of application-
specific web pages which may do some computation to validate
input using javascript or something like it.

ii. The business logic layer is responsible for the tasks that are
specific to the application. In the thin client variant, this layer
may use a generic web server to communicate with the client, but
the bulk of the computation is done by code specific to the
application - written either in a programming language or in scripts
executed by the web server running on the server side of the
network.

3

User Interface

(Client)

Business Logic 
(Application Server)

Database 
(Database Server)

Thin Client Model

User Interface

Business Logic 

Database 
(Database Server)

Thick Client Model

iii. The database layer stores the data, but incorporates little or no
application-specific knowledge beyond things like integrity
constraints.

(a) Triggers.

(b)Stored procedures to be called by the business logic

b. In the thin client variant, the business logic layer and the database
layer may reside on the same physical computer system, or two
different systems connected by a network.

c. As noted in the text, when SQL is used as the medium of
communication between the business layer and the database, it
becomes very possible for the business and server software to be
produced by two different vendors - and, indeed, for one server to
service applications written using many different software packages,
and, as well, for one client to access different servers accessing
different DBMS's.

d. Some examples:

i. This is the model used by my.gordon and Gordon 360. The former
uses software purchased from Jenzabar, and the latter uses code
largely written by students in the Summer Practicum. But both
access the college's Microsoft SQL Server database using SQL. In
this case a thin client model is used - the program is accessed via a
web browser accessing an application server and database server,
The servers run in separate systems (actually virtual machines).

ii. The programming project in this course uses a variant of the thick
client model. The GUI uses code written by me and supplied in
compiled form in project.jar. The business logic is performed
by student-wrriten code in Database.sqlj. The database layer is
IBM Db2.

4

In previous years, this client was a workstation in 244 and the
database resided on joshua.cs.gordon.edu, communicating over the
campus network.

This pattern is still the case if we consider the container running as
a virtual machine under Docker to be a separate "computer" (as in
fact it is since it has its own OS). Now the two "computers"
communicate over an internal network running on the host (which
is what "-p 50000:50000" meant in the command you used when
installing the container - each end of the internal network
connection used port 50000 to communicate with the other
"computer".)

III.Parallel Databases

A. Requirements for serving large numbers of users have led to the
development of PARALLEL systems, often using hundreds of CPU's in a
data center, connected by a local network.

Though this model resembles the centralized model in terms of the way
users are serviced (e.g. by a client-server model using the web), it differs in
some important ways from the original centralized model.

1. The use of massive parallelism - scores, hundreds, or even thousands of
multicore CPU's housed in a data center that communicate with each
other via an internal network rather than via shared memory.

2. The possibility of using fine-grained rather than coarse-grained
parallelism.

a. In coarse-grained parallelism, each transaction is run on a single CPU,
with each CPU potentially running a different transactions.

b. In fine-grained parallelism, an individual transaction may be spread
across several CPU's

5

http://joshua.cs.gordon.edu

3. The use of a parallel file system rather than a single file system shared
among the CPU's.

a. Some variants of RAID are a simple form of this, but more massive
parallelism is generally needed.

b. Frequently, data is sharded on some basis to spread out the load
among the parts of the storage system.

i. As a simple example, data on customers might be spread among
multiple storage subsystems on the basis of their customer ID, so
that data on customers whose id ends with 1 might be stored in one
subsystem; data whose id ends with 2 might be stored in another
subsystem ...

ii. Certain NoSQL database models facilitate sharding, since all the
data associated with a given entity is stored in a single aggregate
rather than being spread over multiple files.

c. To improve performance, some form of replication of data can be
used so that the data storage system holds multiple copies of part or
all of the data (at least data that is frequently needed.)

i. This has an obvious advantage in terms of protection against loss
of data due to hardware failure (as we saw with RAID).

ii. It also ensures that reading frequently accessed data doesn't
become a bottleneck.

iii. At the same time, it also creates issues when writing data to ensure
consistency among all the copies - something which we won't have
time to discuss.

4. One important observation about parallelism is to recognize that there are
a multiple reasons for using a parallel system. A given system's success
must be measured against the goals that led to its installation.

6

a. In general, we are interested in two measures of overall system performance.

i. Response tine (primarily an issue with systems that have some sort
of interactive aspect)- defined as the amount of time that elapses
between the time a request is submitted and the time the user
begins to see the answer to the request - e..g in a web system, the
time between a click on a link and the new page begins loading.

ii. Throughput - the number of transactions that can be completed in a
unit of time.

b. In a parallel system, we aim to achieve one or more of several
improvements.

i. One possible goal is SPEEDUP - to make the processing of individual
transactions (of the same size) faster. This would, of course, generally
require fine-grained parallelism - the use of two or more CPU's and or
portions of the data storage subsystem to cooperate in the performing
of a single transaction.

ii. Another possible goal is SCALEUP - to make it possible to handle
a greater volume of work in the same amount of time. This, in turn
has two sub-categories:

(a) BATCH SCALEUP deals increasing the SIZE of individual
transactions, as would occur if transactions become more
complex and/or if the size of a database grew, so that operations
such as select and join require scanning more tuples. This, too,
entails fine-grained parallelism - the use of two or more CPU's
and or portions of the data storage subsystem to cooperate in the
performing of a single transaction.

(b)TRANSACTION SCALEUP involves increasing the VOLUME
of transactions, as would occur if the number of users accessing the
database were to grow. This can be achieved by still having each
transaction handled by a single CPU and portion of the data

7

subsystem, but by using multiple CPU's and perhaps replicated data
to increase the number of transactions that can be processed during
a given period of time.

(c) Of course, some combination of these two might apply in a given
situation - e.g. both more and bigger transactions.

Example: suppose Gordon grew to 50,000 students. If this were to
happen, the course registration system would have to deal with
more registration operations at the same time, and each transaction
would presumably have to deal with a much larger list of course
offerings. Speed might not increase, but hopefully it would not
decrease!

c. For a variety of reasons (discussed in portions of the text we cannot get to),
efficiently dividing the work of a single transaction among two or more
CPU's is very challenging. Thus, the easiest kind of performance
improvement to attain is transaction scaleup - which, fortunately, is the
kind of scaleup most often needed. However, there are also applications
which require batch scaleup - e.g. decision-support systems that require
analyzing large quantities of transactional data. (e.g. what happens on an
ecommerce site such as Amazon with recommendations like "you might
also like ..." or "others who looked at this item also looked at ...". Speedup
is usually less of an issue.

5. Both CPU and data storage parallelism create algorithmic challenges for
things like consistency maintenance and concurrency-control measures. As a
result, parallel database systems are major pieces of software engineering!

B. However, the centralized approach - whether realized using a single system
or a data center of systems, has a number of disadvantages:

ASK

1. A centralized system is totally vulnerable to failure of the centralized site.
Thus, for example, a power failure or disaster can shut down all access to
the database, even at remote sites unaffected by the failure.

8

2. It may be that a centralized storage and manipulation of data goes hand-in-
hand with centralized CONTROL of data - users have limited autonomy.

3. Issues like these have motivated the development of distributed database
systems,

IV.Distributed DBMS's

A. If we take the idea of parallelism further, we move in the direction of a
DISTRIBUTED SYSTEM.

1. In the use of parallelism we have discussed thus far, the overall system
still resembles a centralized system in the sense that the database and the
CPU's accessing it still reside at a single physical site, but parallelism is
used to handle increased size and/or volume of transactions.

2. In a distributed system, the database itself is spread over a number of
physical sites, each of which houses all or a portion of the database - with
all or portions replicated at multiple sites.

a. This may be done at the data storage level, resulting in various sorts
of distributed file system - where the data belonging to a single file
may replicated and/or sharded across multiple physical sites.

i. In addition to supporting scaleup, a distributed file system may
also address he issue of vulnerability to failure of a single site if
the distribution model is such that all of the information in the
database is available at multiple sites.

ii. Distributed file systems are discussed in portions of chapter 21 of
the book which we will not cover in this course, but you are
certainly encouraged to read it on your own, perhaps after this
course is over.

9

b. This may be done at the DBMS level, where DBMS's at multiple sites
work together

i. PROJECT Figure 20.9 from book

ii. We will introduce distributed databases now, and discuss some of
the issues that arise in this context.

B. Distributed DBMS systems are of two general types.

1. In a HOMOGENEOUS system, the same brand of DBMS software (and
often the same type of hardware platform) is used at each site, and the
database schema is basically the same.

All the nodes in a homogeneous systems generally belong to the same
large organization (such as a multistate bank), and are designed to
accomplish organizational goals such as increased availability in the face
of threats of site failure.

2. In a HETEROGENOUS system, different brands of DBMS software
may be used at different sites, and the database schemas may be quite
different.

a. Heterogenous systems may arise as a result of organizational mergers
that require merging of databases, or as a result of desires for
improved inter-organizational communication.

b. If the schemas of the databases differ, it is may be necessary to use
strategies like wrappers to create the appearance of a common
scheme.

C. Distributed DBMS's are characterized by a much looser coupling between
systems.

1. This facilitates increased gains through parallelism, but also requires
dealing with the resulting algorithmic.

10

2. This also introduces complexities due to communication overhead and
the possibility of failure of a network link.

D. Some of the key advantages of a distributed system are

1. Sharing of data generated at the different sites, without requiring that all
the data be moved to a single central site.

2. The possibility of LOCAL CONTROL and AUTONOMY.

Within boundaries established by the need for sharing, each site may be
able to control its own data, determine what is stored how etc.

3. The possibility of improved response times to queries. As over-against a
centralized system, a distributed system that stores data at the site(s) that
use it the most allows them to access the data more quickly than they
would if they had to get the data from a central site via a communication
link.

4. With the rise of reliance on the internet and ecommerce, a fourth motivation
that has always been there have become especially prominent: availability
and robustness in the face of failures at a site or portion of the network.

E. Distributed systems also face a number of disadvantages and challenges.

1. One major disadvantage of a distributed system is the cost and time
required for communication between sites.

a. This is not necessarily a disadvantage when remote access to the
database is needed, if the alternatives are a centralized system where
ALL queries require communication vs a distributed system where
SOME queries can be processed locally at the requesting site.

b. But operations requiring access to data at multiple sites will almost
always involve more communication between sites than would be
required if all the data involved were at one location.

11

c. The performance impact of communication depends a great deal on
what kind of communication links are used.

In particular, note that the data rate of a network is determined by the
slowest link. If the Internet is used, this is often the "last mile"
connection between a DBMS site and the ISP.

d. The communication cost includes both the time to set up a message
and the time to actually transmit it. This may entail passing through
several nodes (recall discussion in CPS221), with overhead for each.

e. Depending on the configuration, communication cost may dominate
disk access cost, in which case a distributed systems might need to be
optimized to minimize the number and volume of messages, rather
than disk accesses or may need to consider various tradeoffs - reduced
disk accesses at the cost of more communication or vice versa.

2. A second disadvantage is increased complexity. Choosing a query
processing strategy, performing updates, dealing with crashes, and
concurrency control are all much more complex in a distributed system.

3. A third disadvantage related to the second is that distributed systems are
much harder to debug. In fact, the algorithms used must be bug-proof;
discovering the cause of a problem that arises under certain
circumstances of operation timing is not possible using conventional
debugging techniques.

F. Two key issues involved in setting up a distributed system are replication
and sharding.

1. Replication refers to storing the same data at more than one location,
both to facilitate processing and to ensure that the data does not become
unavailable if a single site fails due to something like a power failure or a
disaster. (Should that occur, the rest of the system should be able to
continue processing and providing access to the data, perhaps offering
only lower performance.)

12

a. If most of the access to the data is in the form of queries, with updates
being rare, then replication does not introduce any problems.

For example, a product catalog may be replicated at multiple sites to
protect against having a single point of failure. The catalog may be
updated wholesale periodically, with a copy of the new catalog sent to
all the sites that hold replicas. At the precise moment an update is
being done, there may be a brief period of inconsistency, but this is
not problematic.

b. On the other hand, if replicated data is updated by frequent
transactions, then all kinds of issues need to be considered such as
those related to support for atomic transactions and concurrency.

2. Sharding refers to spreading portions of the data across multiple sites -
perhaps to more naturally mirror the uses of the data and to support
distributed control of it.

3. It is often the case that the same data is both replicated and sharded.

G. The CAP Theorem

1. There are three desirable characteristics in distributed database system
that replicates data.

a. Consistency - each replica of a data item give the same value when
accessed. This implies that when the value of some data item is
updated at one site, it must be updated everywhere else - which cannot
happen instantaneously, of course - but we must ensure that no one
sees a "stale" value of a data item that is being updated. This implies
that some mechanism must prevent access to a data item elsewhere
while it is being changed somewhere.

b. Availability - defined this way in this context: ""Every request
received by a non-failing node in the system must result in a

13

response" [Lynch and Gilbert cited by Sadalage and Fowler]). In
particular an update to a replicated data item requires access to most
or all of the replicas to ensure consistency,

c. Partition tolerance - in a distributed system where nodes communicate
via a network, failure of a portion of the network may result in
partitioning of the network into two or more subnetworks with no way
for nodes in one subnetwork to communicate with nodes in the other.
Since this is unavoidable, the system must be able to function
correctly despite this happening.

2. A theorem known as the CAP theorem says that in a distributed system,
you can have any two of these three desirable properties, but you can't
have all three. Since partitions are a consequence of physical factors
beyond software control (power failures, tornados, etc.), this boils down
to the possibility that we can have either consistency or availability - but
not both.

3. Obviously, in some cases doing without consistency is not an option.
(Example: a banking system.) But in other cases, it may be desirable to
forgo absolute consistency to ensure availability even in the case of a
network partition.

a. In this case, ensuring ACID transactions may not be possible. Some
relational DBMS's (e.g. MySQL) allow the user choose whether or not
ACID transactions are needed, (Forgoing ACID transactions will
improve throughput and/or performance.)

b. There is also a family of non-relational DBMS's (collectively called
NoSQL databases) which typically do not support ACID transactions.

c. One alternative to strict ACID consistency in such systems is
sometimes called BASE - Basically Available, Soft State, Eventually
Consistent.

14

V. Cloud Computing

A. Historically, an organization relying on a database system has owned its own
hardware - whether this be centralized, a server, or distributed.

B. Increasingly, many users are moving to the use of cloud computing, in
which work the user contracts with a vendor to provide services using
computers in a server farm somewhere in the cloud, rather than purchasing
and managing their own computer. The user pays the vendor a fee based on
how much the user needs/uses.

C. Cloud services are of three general types:

1. Infrastructure as a service (IaaS) - the vendor furnishes and maintains a basic
computer system, with the user responsible for installing and managing
whatever software is needed (including the OS, web servers, DBMS and
application software), to accomplish their task.

2. Platform as service (PaaS) - the vendor furnishes and maintains a
complete platform (e.,g. hardware, OS, networking, DBMS or whatever)
with the user installing and managing application software that runs on
top of this platform.

Example: Amazon Web Services (Note how you sometimes see AWS in
URL's for pages linked from other sites. That is because the entity you
are dealing with uses AWS cloud services to furnish the lower layers of
their system.)

3. Software as a service (SaaS) - the vendor furnishes a platform and application
software which the user uses to accomplish a specific kind of task.

Examples: Gordon's email system; Canvas

D. Pros and cons

1. There are several key motivations for use of cloud computing.

15

a. Ir allows greater equipment flexibility. If an organization's needs
grow, it can request its service provider to provision additional units
of service If the needs shrink, it can cut back on what it buys. All this
without having to commit to major capital investment in equipment
and/or having to deal with selling off unneeded equipment.

b. Related to this, the cloud provider is more likely to keep on top of
hardware upgrades and software updates.

c. An organization does not need to have staff with the technical
capabilities needed to maintain aspects of their system that they
contract out. Furthermore, it is generally the case that the technical
staff needed to service many clients is smaller than what would be
needed if each client had their own staff.

d. Cloud providers often have technical staff on site 24-7, so that a problem
can be addressed more quickly than if one of the organization's own staff
had to rush to the site in the middle of their night.

2. Of course, there are also concerns:

a. Security of sensitive information that is stored off-site. This can be a
particular concern with information that is legally protected.

b. Vulnerability to service provider problems (e.g. financial problems)
which may make then unable to deliver the services they contracted
to.

16

